

September 2, 2014, Revision -

General Description

The AXI External Memory Controller (EMC) DO-254 Certifiable Data Package is made up of the artifacts produced by applying the DO-254 lifecycle to the Xilinx[®] AXI EMC IP and an encrypted version of the source code. This includes the following completed documents:

- Plan for Hardware Aspects of Certification
- Hardware Validation and Verification
 Plan
- Hardware Configuration Management Plan
- Hardware Design Plan
- Hardware Process Assurance Plan
- Hardware Validation and Verification Standard
- Hardware Requirements Standard
- Hardware Design Standard
- Hardware Requirements Document
- Hardware Design Document
- Hardware Elemental Analysis Results
- Hardware Configuration Index (includes Hardware Lifecycle Environment Configuration Index)
- Hardware Test Procedures
- Hardware Verification Results
- Hardware Elemental Analysis Results
- Hardware Requirements Traceability
 Matrix
- Hardware Accomplishment Summary

The above documents are available for certification efforts, however not all documents are included in the delivery package.

The AXI External Memory Controller (EMC) core provides an interface for external memory devices. The adaptable block provides memory controller functionality for SRAM, NOR Flash, and PSRAM/CellularRAM memory devices. The core provides an AXI4 Slave Interface that can be connected to AXI4 Master or Interconnect devices in the AXI4 Systems.

Features

- Supports AXI4 Slave Memory Map interface data width of 32 and 64 bits
- Supports AXI4 increment and wrap Transactions
- Supports AXI4 narrow and unaligned Transfers
- Supports up to four external memory banks
- Supports Synchronous SRAMs with
- configurable byte parity check and pipeline stages
- Supported memory types
 - Synchronous SRAM
 - o Asynchronous SRAM
 - Linear Flash (or Parallel NOR Flash)
 - PSRAM (or Cellular RAM)
 - Page Mode NOR Flash
 - Numonyx Flash
- Provides configuration registers to dynamically change access mechanism for PSRAM and Numonyx Flash memories
- Provides Parity error status register for Synchronous SRAM memories

Block Diagram

Supported FPGA Families

Xilinx[®] 7-Series and Spartan[®]-6 Series

Development Tools

Xilinx[®] ISE/EDK[®] 14.5 or later ModelSim[®] v10.2c or later (models required) Xilinx[®] ISIM 14.5 or later (no models required) Xilinx[®] XST 14.5 or later Precision Synthesis 2012b or later

Configuration

The DO-254 LMB version 1.00a is configurable as shown below:

Sattable Daramater	Label in
Settable Parameter	GUI
	Period of
	Linear
C_AXI_CLK_PERIOD_P3	FLASH for
	burst
	mode
	FLASH
C_LINEAR_FLASH_SYNC_BURST	Synchrono
	us Burst
	Mode
	AXI
C_S_AXI_EN_REG	Register
	Interface
	Enable
C_S_AXI_MEM_DATA_WIDTH	AXI
_	Memory

Settable Parameter	Label in GUI
	Interface Data Width
C_S_AXI_MEM_ID_WIDTH	AXI Memory Interface ID Width
C_S_AXI_MEM0_BASEADDR	Base Address of Bank 0
C_S_AXI_MEM0_HIGHADDR	High Address of Bank 0
C_S_AXI_MEM1_BASEADDR	Base Address of Bank 1
C_S_AXI_MEM1_HIGHADDR	High Address of Bank 1
C_S_AXI_MEM2_BASEADDR	Base Address of Bank 2
C_S_AXI_MEM2_HIGHADDR	High Address of Bank 2
C_S_AXI_MEM3_BASEADDR	Base Address of Bank 3
C_S_AXI_MEM3_HIGHADDR	High Address of Bank 3
C_INCLUDE_NEGEDGE_IOREGS	Include negative edge IO registers
C_NUM_BANKS_MEM	Number of Banks
C_MEMO_TYPE	Memory type for Bank 0
C_MEM1_TYPE	Memory type for Bank 1
C_MEM2_TYPE	Memory type for Bank 2

Sottable Parameter	Label in	
Settable Parameter	GUI	
	Memory	
	type for	
	Bank 3	
	Data Bus	
	Width of	
	Bank 0	
	Data Bus	
	Width of	
	Bank 1	
	Data Bus	
	Width of	
	Bank 2	
	Data Bus	
	Width of	
	Bank 3	
	Maximum	
	data bus	
	width of all	
	memory	
	banks	
	Type of	
C_PARITY_TYPE_WEWI_U	parity of	
	BANK 0	
C DADITY TYDE MENA 1	Type of	
C_PARITY_TIPE_WEW_1	parity of	
	BANK 1	
C DADITY TYDE MENA 2	Type of	
	parity of	
	BANK 2	
C DARITY TYDE MEM 3	Type of	
	parity of	
	BANK 3	
	Execute	
	Multiple	
	Memory	
C INCLUDE DATAWIDTH MATCHI	Accesses	
NC 0	to Match	
NG_0	Bank 0	
	Data Bus	
	Width to	
	AXI Data	
	Bus Width	
	Execute	
C_INCLUDE_DATAWIDTH_MATCHI NG_1	Multiple	
	Memory	
	Accesses	
	to Match	

Settable Parameter	Label in GUI
	Bank 1 Data Bus Width to AXI Data Bus Width
C_INCLUDE_DATAWIDTH_MATCHI NG_2	Execute Multiple Memory Accesses to Match Bank 2 Data Bus Width to AXI Data Bus Width
C_INCLUDE_DATAWIDTH_MATCHI NG_3	Execute Multiple Memory Accesses to Match Bank 3 Data Bus Width to AXI Data Bus Width
C_SYNCH_PIPEDELAY_0	Pipeline Latency of Bank 0
C_TCEDV_PS_MEM_0	TCEDV of Bank 0
C_TAVDV_PS_MEM_0	TAVDV of Bank 0
C_TPACC_PS_FLASH_0	TPACC of Bank 0
C_THZCE_PS_MEM_0	THZCE of Bank 0
C_THZOE_PS_MEM_0	THZOE of Bank 0
C_TWC_PS_MEM_0	TWC of Bank 0
C_TWP_PS_MEM_0	TWP of Bank 0
C_TWPH_PS_MEM_0	TWPH of Bank 0
C_TLZWE_PS_MEM_0	TLZWE of Bank 0

Cottoble Devemator	Label in	
Settable Parameter	GUI	
C WB REC TIME MEM 0	Write	
	Recovery	
	of Bank 0	
C SYNCH PIPEDELAY 1	Pipeline	
	Latency of	
	Bank 1	
C_TCEDV_PS_MEM_1	TCEDV of	
	Bank 1	
C_TAVDV_PS_MEM_1	TAVDV of	
	Bank 1	
C_TPACC_PS_FLASH_1	TPACC of	
	Bank 1	
C THZCE PS MEM 1	THZCE of	
	Bank 1	
C THZOE PS MEM 1	THZOE of	
	Bank 1	
C TWC PS MEM 1	TWC of	
0_1100_10_1111_1	Bank 1	
C TWP PS MEM 1	TWP of	
	Bank 1	
C TWDH DS MEM 1		
	Bank 1	
	Rank 1	
	Write	
C_WR_REC_TIME_MEM_1	Recovery	
	of Bank 1	
	Pineline	
C_SYNCH_PIPEDELAY_2	Latency of	
	Bank 2	
C TOEDV DS MEM 2		
	Bank 2	
C TAVDV DS MEM 2		
	Bank 2	
C_TFACC_F3_FLASH_Z	Bank 2	
	Bank 2	
	Bank 2	
C TW/C DS MENA 2		
	Bank 2	
	Pank 2	
	Donk 2	
	DdHK Z	

Cottoble Deversorer	Label in	
Settable Parameter	GUI	
C_TLZWE_PS_MEM_2	TLZWE of	
	Bank 2	
C WR REC TIME MEM 2	Write	
	Recovery	
	of Bank 2	
C SYNCH PIPEDELAY 3	Pipeline	
	Latency of	
	Bank 3	
C_ICEDV_PS_MEM_3	ICEDV OF	
	Bank 3	
C_TAVDV_PS_MEM_3	TAVDV of	
	Bank 3	
C_TPACC_PS_FLASH_3	TPACC of	
	Bank 3	
C_THZCE_PS_MEM_3	THZCE of	
	Bank 3	
C_THZOE_PS_MEM_3	THZOE of	
	Bank 3	
C_TWC_PS_MEM_3	TWC of	
	Bank 3	
C_TWP_PS_MEM_3	TWP of	
	Bank 3	
C_TWPH_PS_MEM_3	TWPH of	
	Bank 3	
C_TLZWE_PS_MEM_3	TLZWE of	
	Bank 3	
	Write	
	Recovery	
	of Bank 3	
	AXI	
C S AXI REG ADDR WIDTH	Register	
	Interface	
	Address	
	Width	
	AXI	
C_S_AXI_REG_DATA_WIDTH	Register	
	Interface	
	Data	
	Width	

Supported FPGA Families

Xilinx[®] 7-Series and Spartan[®]-6

Development Tools

Xilinx[®] ISE/EDK[®] 14.5 or later ModelSim[®] v10.2c or later (models required) Xilinx[®] ISIM 14.5 or later (no models required) Xilinx[®] XST 14.5 or later Precision Synthesis 2012b or later

Assumptions

Assumption 1: The integrator will develop a full set of DO-254 artifacts to reflect the objectives, activities, and lifecycle data related to the system / safety, implementation, target test, acceptance test, production transition aspects, related validation and verification, configuration management, process assurance, and certification liaison aspects of the system/LRU.

The objectives, activities and lifecycle data related specifically to the DO-254 AXI EMC IP Core will be provided to the Integrator for inclusion into their overall certification package.

Assumption 2: Place and route, clock frequency, and parameter selection decisions related to the IP core will have an impact on critical areas such as timing. These decisions and the verification of these implementation decisions will be the responsibility of the integrator.

Assumption 3: Logicircuit will coordinate with the Certification Authority related only to DO-254 compliance with the DO-254 AXI EMC IP Core.

Assumption 4: All objectives related to the building, integration and Production (including Production Testing - ATP) of the system/LRU will be the responsibility of the integrator.

Assumption 5: Objectives related to hardware components other than the DO-254 AXI EMC IP Core are the responsibility of the integrator.

Assumption 6: The integrator will develop all DO-254 artifacts that are related to the integration and testing of the DO-254 AXI EMC IP Core in their system.

Assumption 7: The integrator will perform implementation objectives related to the target hardware, including the integral process objectives, to verify the timing and other critical parameters of the DO-254 AXI EMC IP Core.

Assumption 8: The applicant is responsible for communicating with their Certification Authority relative to the implementation of the DO-254 AXI EMC IP Core into their system.

Assumption 9: Compliance with the objectives related to system (and safety-related) requirements allocated to the hardware will be the responsibility of the integrator. The requirement to feed all IP derived requirements to the System / Safety Process will be the responsibility of the integrator. The integrator will be required to generate hardware requirements allocated from the system requirements that exercise the DO-254 AXI EMC IP Core at the system level.

Assumption 10: The integrator is required to include a clock timing constraint for this DO-254 AXI EMC IP core. This clock timing constraint will define the clock rate at which the IP core will operate. It is recommended that the integrator define this constraint in the UCF file. The integrator typically would also include (at a minimum, but not limited to) pinout constraints, I/O electrical standards, etc. An

example UCF file will be provided in 10117-UG, but it is for reference only.

Assumption 11: The integrator is not required to rerun any elemental analysis (code coverage). Code coverage results will indicate that all configurations required to attain 100% coverage are tested.

Simulation validation for the DO-254 AXI EMC 1.00a is being done on a test board. The integrator must revalidate a portion of this simulation on the integrator's target. Logicircuit will provide the files and data necessary to perform this revalidation in 10117-UG.

In order to accomplish this revalidation, the integrator is required to design his PCB to have access to at least 13 spare FPGA pins that can be connected to a logic analyzer.

If the integrator chooses to do post place and route simulation on their system as an additional validation (again, this would only be a portion of Logicircuit's simulation), Logicircuit will provide the necessary files for the DO-254 AXI EMC IP.

September 2, 2014, Revision -

Revision History

			Subversion
			repository
Revision	Reason/Description	Date	revision
-	Initial Release	9/2/2014	147